Bilingual Co-Training for Sentiment Classification of Chinese Product Reviews
نویسنده
چکیده
The lack of reliable Chinese sentiment resources limits research progress on Chinese sentiment classification. However, there are many freely available English sentiment resources on the Web. This article focuses on the problem of cross-lingual sentiment classification, which leverages only available English resources for Chinese sentiment classification. We first investigate several basic methods (including lexicon-based methods and corpus-based methods) for cross-lingual sentiment classification by simply leveraging machine translation services to eliminate the language gap, and then propose a bilingual co-training approach to make use of both the English view and the Chinese view based on additional unlabeled Chinese data. Experimental results on two test sets show the effectiveness of the proposed approach, which can outperform basic methods and transductive methods.
منابع مشابه
Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)
As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...
متن کاملCo-Training Based Bilingual Sentiment Lexicon Learning
In this paper, we address the issue of bilingual sentiment lexicon learning(BSLL) which aims to automatically and simultaneously generate sentiment words for two languages. The underlying motivation is that sentiment information from two languages can perform iterative mutual-teaching in the learning procedure. We propose to develop two classifiers to determine the sentiment polarities of words...
متن کاملUsing Bilingual Knowledge and Ensemble Techniques for Unsupervised Chinese Sentiment Analysis
It is a challenging task to identify sentiment polarity of Chinese reviews because the resources for Chinese sentiment analysis are limited. Instead of leveraging only monolingual Chinese knowledge, this study proposes a novel approach to leverage reliable English resources to improve Chinese sentiment analysis. Rather than simply projecting English resources onto Chinese resources, our approac...
متن کاملCo-Training for Cross-Lingual Sentiment Classification
The lack of Chinese sentiment corpora limits the research progress on Chinese sentiment classification. However, there are many freely available English sentiment corpora on the Web. This paper focuses on the problem of cross-lingual sentiment classification, which leverages an available English corpus for Chinese sentiment classification by using the English corpus as training data. Machine tr...
متن کاملAutomatic Seed Word Selection for Unsupervised Sentiment Classification of Chinese Text
We describe and evaluate a new method of automatic seed word selection for unsupervised sentiment classification of product reviews in Chinese. The whole method is unsupervised and does not require any annotated training data; it only requires information about commonly occurring negations and adverbials. Unsupervised techniques are promising for this task since they avoid problems of domain-de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Linguistics
دوره 37 شماره
صفحات -
تاریخ انتشار 2011